Code: IT1T4, IT2T7RS

I B. Tech - I Semester - Regular Examinations - November 2015

DISCRETE MATHEMATICS (INFORMATION TECHNOLOGY)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks $11 \times 2 = 22 \text{ M}$

- 1. a) Check whether the formula $P \rightarrow (P \lor Q)$ is a tautology or not?
 - b) Construct the truth table for $P \land (P \rightarrow Q)$.
 - c) Write the inverse of the conditional statement "if 2+2=4 then I am not the Prime Minister of India."
 - d) Symbolize the statements "All men are mortal" and "Some men are good".
 - e) Let $X = \{0,1,2,3,4\}$ and $R = \{(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)\}$. Draw the digraph of the relation R on X.
 - f) Draw all simple graphs of three vertices.
 - g) Define Euler graph and Hamiltonian graph.
 - h) How many ways are there to arrange the nine letters in the word "ALLAHABAD"?
 - i) Find P(8,4).

- j) Find the generating function of a^n (a is a constant).
- k) Solve the recurrence relation $a_n + 5a_{n-1} + 6a_{n-2} = 0$ for $n \ge 2$.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) Show that

8 M

$$\sim (P \land Q) \rightarrow (\sim P \lor (\sim P \lor Q)) \Leftrightarrow \sim P \lor Q$$

- b) Obtain the principal disjunctive normal form of $P \to ((P \to Q) \land \sim (\sim Q \lor \sim P))$
- 3. a) Show that $R \wedge (P \vee Q)$ is a valid conclusion from the premises $P \vee Q, \ Q \rightarrow R, \ P \rightarrow M \ and \sim M$
 - b) Let A be a set. Define a relation R on A×A by (a,b)R(c,d) iff a+b=c+d.

Then prove that R is an equivalence relation on A×A. 8 M

4. a) Let $A = \{1, 2, 3, 4\}$ and let R be a relation on A defined by $R = \{(1,1), (1,2), (2,4), (3,2), (4,3)\}$

Find the transitive closure of R.

8 M

- b) Prove that in any undirected graph there is an even number of vertices of odd degree. 8 M
- 5. a) In how many ways can a committee of 5 persons be formed from 6 men and 4 women so as to include at least 2 women?
 - b) Find the number of integers between 1 and 250 that are divisible by any of the integers 2, 3 and 7. 8 M
- 6. a) Solve the recurrence relation

$$a_n - 6a_{n-1} + 9a_{n-2} = 0$$
, $n \ge 2$ and $a_0 = 2$, $a_1 = 3$ using generating function.

b) Solve the recurrence relation

$$a_n - 4a_{n-1} - 12a_{n-2} = 0$$
, $n \ge 2$ and $a_0 = 4$, $a_1 = \frac{16}{3}$ using the characteristic roots. 8 M

8 M